- 2013-09-09 20:59
- 作者:佚名
- 来源:中国经济网
大量无结构化的医疗数据让数据分析变得困难
当然,医疗机构在没有收集数据的前提下无法进行数据分析。iHT2表示,在医疗机构中,有些因素使分析变得复杂。80%以上的医疗数据都是无结构的,无论纸质还是其他形式的都需要手动提取数据,甚至是结构数据——例如来自于HIE的——也经常无法分析。iHT2指出,这样的结果就是医疗机构最终使用来自保险公司的数据来对自己的机构有了更多的认识。
Madsen在书中写道,“谈到医疗商业智能化,医疗机构的规模是很重要的,”美国最大的医疗机构IntermountainHealthcare和KaiserPermanente,已经实施商业智能化的医疗很久了,但对于小型医疗机构,难度还是很大的。Madsen表示,大部分的医疗机构都看到了商业智能的价值,但他们一直想不清一个问题——“我们该做些什么呢”。
大多数选择商业智能的机构都是看重它适用于管理报告的需求。这对于医院每年要向政府机构提供一千份以上的报告很有意义。Madsen说,尽管有如此明显的需要,但医疗机构通常不知道接下来该怎么做,也不知道如何把报告中的数据使用好,来提高实际操作的效率或者是做出其他的改进。
还好,IHT2报告提出了建议。如对病人的健康需求做一个评估,可帮助医疗机构合理改进服务,同样也能认识每个人的健康差异,甚至能预测哪个病患的病情会变的更严重。另外,评估也能帮助推进高质量项目,更能发现造成医疗变化的原因。
值得注意的是,有些模型并不起效。在医疗共享储蓄计划和ACO模型中,目标就是能积累储蓄,最终使医疗成本降低。所以,根据iHT2的说法,收入周期管理工具并不起效。
另外,如今的成本计算系统并不能完整计算出医疗机构的总成本,它需要考虑到早期医院的一次解雇能为一个短期设备存到足够的钱,但对于另一个长期医疗设备,它失去了收入的机会。iHT2说,弄清楚医疗机构的总成本,需要一个“针对捆绑支付、复杂的、分阶段的会计记账系统”。
共4页: 上一页 [1]2 [3][4]下一页 [查看全文] |